djairo guedes de figueiredo
análise de fourier e
equações diferenciais
parciais

Instituto de Matemática Pura e Aplicada - CNPq
Copyright ©1977, by Djairo Guedes de Figueiredo
Direitos reservados, 1977, por Conselho Nacional
de Desenvolvimento Científico e Tecnológico, CNPq,
Av. W–3 Norte, Brasília, DF

Impresso no Brasil/Printed in Brazil

Capa: Casa do Desenho – Gian Carli

Projeto Euclides

Comissão Editorial: Elon Lages Lima (Coordenador), Chaim Samuel Höning,
Djairo Guedes de Figueiredo, Heitor Gurgulino de Souza,
Jacob Palis Junior, Manfredo Perdigão do Carmo,
Pedro Jesus Fernández.

Títulos já publicados
1. Curso de Análise, vol. 1, Elon Lages Lima
2. Medida e Integração, Pedro Jesus Fernández
3. Aplicações da Topologia à Análise, Chaim Samuel Höning
4. Espaços métricos, Elon Lages Lima
5. Análise de Fourier e equações diferenciais parciais, Djairo Guedes de Figueiredo

Impresso e distribuído por:
Editora Edgard Blücher, Ltda.
01000 Caixa Postal 5450
São, SP, Brasil
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFÁCIO</td>
<td></td>
<td>IX</td>
</tr>
<tr>
<td>INTRODUÇÃO</td>
<td></td>
<td>XIII</td>
</tr>
<tr>
<td>CAPÍTULO 1</td>
<td>POR QUE ESTUDAR SÉRIES DE FOURIER?</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Condução do calor numa barra</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Formulação matemática do problema da condução do calor</td>
<td>5</td>
</tr>
<tr>
<td>CAPÍTULO 2</td>
<td>SÉRIES DE FOURIER</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Funções periódicas</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Convergência uniforme</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Coeficientes de Fourier</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Série de Fourier</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Série de Fourier de funções pares e ímpares</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Cálculo de algumas séries de Fourier</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Integração de séries de Fourier</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Estimativas dos coeficientes de Fourier</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Forma complexa da série de Fourier</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>Identidade de Parseval</td>
<td>38</td>
</tr>
<tr>
<td>2.11</td>
<td>Nota histórica</td>
<td>40</td>
</tr>
<tr>
<td>Exercícios</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>CAPÍTULO 3</td>
<td>CONVERGÊNCIA DAS SÉRIES DE FOURIER</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Classes das funções consideradas</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Convergência pontual da série de Fourier</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Lema de Riemann-Lebesgue</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Convergência pontual da série de Fourier (continuação)</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Desigualdade de Bessel</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Desigualdades de Cauchy-Schwarz e de Minkowski</td>
<td>63</td>
</tr>
<tr>
<td>3.7</td>
<td>Convergência uniforme da série de Fourier</td>
<td>68</td>
</tr>
<tr>
<td>3.8</td>
<td>Núcleos de Dirac</td>
<td>72</td>
</tr>
<tr>
<td>3.9</td>
<td>Teorema da aproximação de Weierstrass</td>
<td>77</td>
</tr>
<tr>
<td>3.10</td>
<td>O teorema de Fejér</td>
<td>80</td>
</tr>
<tr>
<td>3.11</td>
<td>Identidade de Parseval</td>
<td>84</td>
</tr>
<tr>
<td>3.12</td>
<td>Funções de variação limitada</td>
<td>88</td>
</tr>
<tr>
<td>3.13</td>
<td>Fenômeno de Gibbs</td>
<td>93</td>
</tr>
<tr>
<td>3.14</td>
<td>Problema isoperimétrico</td>
<td>96</td>
</tr>
<tr>
<td>3.15</td>
<td>Nota histórica</td>
<td>99</td>
</tr>
<tr>
<td>Exercícios</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
CAPÍTULO 4 EQUAÇÃO DO CALOR 102
 4.1 Condução do calor: barra com extremidades mantidas a 0 °C 102
 4.2 Condução do calor: barra sujeita a outras condições laterais 108
 4.3 Condições de fronteira não-homogêneas 112
 4.4 Equação do calor não-homogênea 114
 4.5 Condução do calor em uma barra não-homogênea 118
 4.6 Unicidade de solução do PVIF (1) 120
 4.7 Variações da temperatura do solo 124
Exercícios ... 127
CAPÍTULO 5 EQUAÇÃO DAS ONDAS 130
 5.1 Equação da corda vibrante 130
 5.2 Resolução por séries de Fourier 134
 5.3 Energia da corda vibrante 139
 5.4 Harmônicos, frequência, amplitude 142
 5.5 Corda dedilhada ... 144
 5.6 Vibrações forçadas, Ressonância 146
 5.7 Corda infinita .. 149
 5.8 Corda semi-infinita 160
 5.9 Linhas de transmissão 164
 5.10 Vibrações longitudinais de uma barra elástica 168
 5.11 Soluções generalizadas à Sobolev 172
Exercícios ... 182
CAPÍTULO 6 TRANSFORMADA DE FOURIER E APLICAÇÕES 191
 6.1 À guisa de motivação 191
 6.2 Definição da transformada de Fourier 196
 6.3 Espaço e transformada de Fourier em 200
 6.4 Produto de convolução 207
 6.5 Teorema de Plancherel 211
 6.6 Fórmula do somatório de Poisson e equação do calor 213
 6.7 Problema de Cauchy para a equação do calor 216
 6.8 Condução do calor na barra semi-infinita 220
Apêndice Funções representadas por integrais 222
Exercícios ... 238
CAPÍTULO 7 EQUAÇÃO DE LAPLACE 245
 7.1 Problema de Dirichlet 245
 7.2 Problema de Dirichlet no retângulo 249
 7.3 Problema de Dirichlet no disco 251
 7.4 Problema de Dirichlet para a equação de Laplace num semiplano 257
Exercícios ... 259
Respostas e sugestões
Referências ..
Índice ...
cações, e seus programas visam pouco ao uso futuro no ciclo profissional. Neste, a Matemática é utilizada de “modo diferente” daquele que o aluno viu no ciclo básico! Em algumas disciplinas do ciclo profissional, a Matemática necessária é desenvolvida *ad hoc*! Parecem faltar, no ciclo básico, algumas disciplinas de conexão, como sejam Métodos Matemáticos da Física ou Equações Diferenciais Parciais, ou, até mesmo, Equações Diferenciais Ordinárias, apresentadas com uma forte dosagem de aplicações à Física e à Engenharia. Onde anda aquela cadeira, dos antigos cursos de Engenharia, que era tão útil nesse espírito de conexão, a qual era ministrada pelos departamentos de Matemática, e que trazia aquele nome tão pitoresco: “Mecânica racional precedida de elementos de cálculo vetorial”?

b) Nos cursos de graduação em Matemática, bacharelado e licenciatura, quase todas as disciplinas são oferecidas pelo Departamento de Matemática, via de regra, com um enfoque pouco aplicado. A Física, a Química e a Biologia comparecem na quantidade mínima para atender às exigências da legislação federal. Existe em alguns lugares a idéia bizarra de que essas matérias são um trambolho que deve ser logo superado para que o aluno possa logo se dedicar às disciplinas matemáticas, pois são estas que realmente importam. Será? Que vão fazer esses alunos após se tornarem bacharéis ou licenciados? Talvez a maior parte deles vá ensinar pessoas para as quais a Matemática é apenas uma ferramenta. Não seria bom que esses professores tivessem aprendido um pouco da linguagem das aplicações para melhor motivar seus alunos?

c) O aluno de Mestrado em Matemática é o bacharel ou o licenciado formado no espírito da letra (b) acima. É, via de regra, pessoa avessa às aplicações, não porque as conheça e as julgue desagradasáveis, mas sim porque não as conhece e as teme. A maioria dos programas de Mestrado em Matemática não procura sanar esse problema. Talvez se julgue que seja demasiado tarde. Desse modo, os cursos de Mestrado se limitam a melhorar o nível de conhecimento estritamente matemático dos alunos egressos de nossas graduações. Mestres formados nesse esquema poucos poderão fazer no sentido de minorar os problemas das letras (a) e (b) acima. Não cremos que seja difícil fazer algo, nesse nível de Mestrado, para atacar os problemas que expusemos anteriormente: A introdução de certas disciplinas, como, por exemplo, Equações Diferenciais Parciais, no espírito do presente texto, seria um passo na direção de futuros programas mais ambiciosos.
Meus agradecimentos a todos que leram o manuscrito ou partes do mesmo e nos deram sugestões e apontaram incorreções; em particular, aos professores David Goldstein Costa, José Valdo Gonçalves, Nelson Ortega da Cunha, Pedro Nowosad e Wellington Santiago.

Brasília, novembro de 1977

Djairo Guedes de Figueiredo
“Returning to the question of the Conduction of Heat, we have first of all to say that the theory of it was discovered by Fourier, and given to the world through the French Academy in his Théorie analytique de la chaleur, with solutions of problems naturally arising from it, of which it is difficult to say whether their uniquely original quality, or their transcendentally intense mathematical interest, or their perennially important instructiveness for physical science, is most to be praised.” (Kelvin, Encyclopaedia Britannica, 1878.)

“Par l’importance de ses découvertes, par l’influence décisive qu’il a exercé sur le développement de la Physique mathématique, Fourier méritait l’hommage qui est rendu aujourd’hui à ses travaux et à sa mémoire. Son nom figurera dignement à côté des noms, illustres entre tous, dont la liste, destinée à s’accroître avec les années, constitue dès à présent un véritable titre d’honneur pour notre pays. La Théorie analytique de la Chaleur..., que l’on peut placer sans injustice à côté des écrits scientifiques les plus parfaits de tous les temps, se recommande par une exposition intéressante et originale des principes fondamentaux.” (Darboux, Oeuvres de Fourier, 1, 1888.)

“La théorie de la chaleur de Fourier est un des premiers exemples de l’application de l’analyse à la physique; en partant d’hypothèses simples qui ne sont autre chose des faits expérimentaux généralisés, Fourier en a déduit une série de conséquences dont l’ensemble constitue une théorie complète et cohérente. Les résultats qu’il a obtenus sont certes intéressants par eux-mêmes, mais ce qui l’est plus encore est la méthode qu’il a employé pour y parvenir et qui servira toujours de modèle à tous ceux qui voudront cultiver une branche quelconque de la physique mathématique. J’ajouterai que le livre de Fourier a une importance capitale dans l’histoire des mathématiques et que l’analyse pure lui doit peut-être plus encore que l’analyse appliquée.” (Poincaré, Théorie analytique de la propagation de la chaleur, 1891.)
O estudo das Equações Diferenciais começa com a criação do Cálculo Diferencial e Integral no século XVII, e é guiado, inicialmente, por suas aplicações à mecânica das partículas. Nessas aplicações, o uso de leis físicas, como as três de Newton da Dinâmica e a lei da gravitação universal, possibilita obter equações diferenciais ordinárias que representam os fenômenos em estudo. O sucesso em tratar esses problemas utilizando o Cálculo Diferencial foi um enorme estímulo aos físicos e matemáticos do século XVIII em procurar modelos para problemas da Mecânica do Contínuo e de outros ramos da Física (Termologia, por exemplo) que expressem os fenômenos em termos de Equações Diferenciais. Entretanto as equações resultantes, sendo equações diferenciais parciais, trazem sérias dificuldades matemáticas em sua resolução. As três equações básicas que já aparecem nos estudos dos matemáticos do século XVIII são as seguintes: no problema das vibrações transversais de uma corda, a posição \(u(x, t) \) de um ponto \(x \) da corda, num instante \(t \), deve satisfazer à equação das ondas

\[
u_{tt} = c^2 u_{xx},\]

no problema da condução do calor em uma barra, a temperatura \(u(x, t) \) do ponto \(x \) da barra, no instante \(t \), deve satisfazer à equação do calor

\[
u_{t} = k u_{xx},\]

No problema do equilíbrio de uma membrana sob a ação de certas forças, obtém-se que uma certa função \(u(x, y) \) deve satisfazer à equação de Laplace

\[
u_{xx} + u_{yy} = 0,\]

em uma região do plano \(x, y \).

Para esses problemas, a obtenção de soluções satisfazendo, além da equação diferencial, a certas condições iniciais ou condições de fronteira é uma tarefa difícil. E esse é o objetivo central deste trabalho.

O método de resolução desses problemas é conhecido como o método de Fourier, o qual consiste em duas etapas. Na primeira, utiliza-se separação de variáveis para obter problemas de autovalor, para equações diferenciais ordinárias, estreitamente relacionados com as equações diferenciais parciais em estudo. Nessa etapa, obtém-se uma família de soluções da equação diferencial parcial que satisfazem a uma parte das condições.
de fronteira. A ideia básica, a seguir, é utilizá-las para compor a solução do problema como uma série cujos termos são produtos dessas soluções por coeficientes adequadamente escolhidos; essa é a segunda etapa, que requer a chamada Análise de Fourier.

No Capítulo 1, aplica-se o método de Fourier para o tratamento detalhado do problema da condução do calor em uma barra; visamos, desse modo, motivar o estudo das séries de Fourier através de um exemplo de bastante significado histórico. De fato, esse é precisamente um dos problemas estudados por Fourier em seu tratado de 1822, *Théorie analytique de la chaleur* (Teoria analítica do calor). É nesse trabalho que o problema de representação de uma função por uma série trigonométrica é colocado em termos mais claros, concludindo uma era de estudo desse problema, marcada por dúvidas e controvérsias mantidas entre eminentes matemáticos como d'Alembert, Euler, Daniel Bernoulli e Lagrange. Reconhece-se que o trabalho de Fourier carece de rigor, o que é absolutamente compreensível porque, na época, a Análise não estava ainda em bases sólidas. Foram precisamente as dúvidas e implicações em problemas como os da convergência da série de Fourier, cuja relevância era indiscutível, que motivaram matemáticos como Cauchy, Bolzano, Dirichlet e outros, a procederem a uma formalização mais cuidadosa da Análise.

Os Capítulos 2 e 3 contêm uma teoria das séries de Fourier, e a separação em dois capítulos visa a atender diferentes grupos de leitores. Aqueles que têm menor interesse pelas questões matemáticas e visam mais às aplicações das séries de Fourier poderão omitir o Capítulo 3, ou, pelo menos, ler apenas os resultados, deixando as demonstrações de lado.

Com o instrumental adquirido nos Capítulos 2 e 3, tratam-se, no Capítulo 4, vários problemas de condução do calor em uma barra.

O Capítulo 5 estuda os vários problemas para a equação unidimensional das ondas. Além de utilizarmos o método de Fourier, tratamos alguns problemas usando o fato de que a equação das ondas possui uma solução geral, o que já foi observado por d'Alembert. Esse capítulo contém, na Secção 5.11, um estudo detalhado da existência de solução generalizada para a equação das ondas; os leitores que não estejam familiarizados com a teoria da integral de Lebesgue podem omitir essa seção, onde se faz uso dos chamados espaços de Sobolev.

Outro instrumental básico introduzido neste texto é a transformada de Fourier. O Capítulo 6 versa sobre ela e algumas de suas aplicações às equações do calor e das ondas.

Finalmente, o Capítulo 7 trata o problema de Dirichlet para a equação de Laplace em regiões muito simples como retângulos, discos ou coroas.
CAPÍTULO 1

POR QUE ESTUDAR SÉRIES DE FOURIER?

Este capítulo, além de responder à pergunta enunciada no título do capítulo, mostra como surgiu a teoria das séries de Fourier, e assim se constitui em uma motivação adequada para o trabalho desenvolvido em parte substancial deste texto. Estudaremos o problema da condução do calor numa barra. Na tentativa de resolvê-lo, usaremos a matemática que aprendemos nos cursos de Cálculo Diferencial e Integral e de Equações Diferenciais, e chegaremos à conclusão de que ela é insuficiente. Esperamos convencer o leitor de que a resolução do problema requer algo mais, e que esse algo mais é a série de Fourier.

1.1 Condução do calor numa barra

Considere uma barra de comprimento \(L \), cuja seção transversal tem área \(A \), feita de um material condutor uniforme de calor. Suponhamos que a superfície lateral da barra esteja isolada termicamente de modo a não permitir, através dela, transferências de calor com o meio ambiente. Transferências podem, entretanto, ocorrer através das extremidades da barra.

Figura 1.1

A uniformidade do material e o isolamento térmico lateral implicam que o fluxo de calor se dê somente na direção longitudinal, e, portanto, estamos em presença de um problema de condução do calor em uma dimensão apenas. Mais precisamente, as várias grandezas físicas são constantes em cada seção transversal, podendo, obviamente, variar de uma seção para outra.

A lei do resfriamento de Fourier diz o seguinte: considere duas placas, \(P_1 \) e \(P_2 \), de áreas iguais a \(A \), mantidas constantemente às temperaturas
\(T_1 \) e \(T_2 \), respectivamente; se colocadas paralelamente a uma distância \(d \) uma da outra, haverá passagem de calor da placa mais quente para a mais fria, e a quantidade de calor, por unidade de tempo, transferida de uma placa para outra é dada por

\[
Q = \frac{kA|T_2 - T_1|}{d},
\]

onde \(k \) é a condutibilidade térmica do material entre as placas. No sistema CGS, \(k \) tem as dimensões de cal/cm·s·°C. Utilizaremos a seguir essa lei para estudar a condução do calor na barra.

Representemos por \(u(x, t) \) a temperatura de um ponto de abcissa \(x \) (imaginemos que a barra esteja colocada sobre o eixo dos \(x \), como indica a Figura 1.2) no tempo \(t \). Observe que a temperatura independe das coordenadas espaciais \(y \) e \(z \).

\[
\text{Figura 1.2}
\]

Tomemos duas seções transversais da barra localizadas em \(x \) e em \(x + d \). Para aplicar a lei de Fourier, imaginamos essas seções como as placas \(P_1 \) e \(P_2 \) acima. Entretanto há uma dificuldade porque as temperaturas nessas seções variam com o tempo, e, portanto, não são constantes como requer a lei de Fourier. Para superar essa dificuldade, vamos introduzir a grandeza fluxo de calor através duma seção \(x \), num instante \(t \), o que será feito do seguinte modo: fixe o tempo \(t \) em (1), faça \(T_2 = u(x + d, t) \) e \(T_1 = u(x, t) \), e passe ao limite quando \(d \) tende a zero. Tal limite será \(kA|u_x(x, t)| \). Definimos, então, o fluxo de calor na direção positiva do eixo \(x \) como uma função \(q(x, t) \) dada por

\[
q(x, t) = -kAu_x(x, t).
\]

O sinal menos em (2) é justificado do seguinte modo: se a temperatura \(u \) crescesse com \(x \), \(u_x \) seria positivo; mas, como o calor fluiria para a esquerda,
função cujas derivadas parciais até segunda ordem são contínuas na região do plano \((x, t)\), dada por \(0 < x < L\) e \(t > 0\).

<table>
<thead>
<tr>
<th>Material</th>
<th>(K(\text{cm}^2/\text{s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prata</td>
<td>1,71</td>
</tr>
<tr>
<td>Cobre</td>
<td>1,14</td>
</tr>
<tr>
<td>Alumínio</td>
<td>0,86</td>
</tr>
<tr>
<td>Ferro fundido</td>
<td>0,12</td>
</tr>
<tr>
<td>Granito</td>
<td>0,011</td>
</tr>
<tr>
<td>Argila</td>
<td>0,0038</td>
</tr>
<tr>
<td>Água</td>
<td>0,00144</td>
</tr>
</tbody>
</table>

Análise do que fizemos até aqui. A temperatura \(u(x, t)\) da barra obedece à equação do calor (6). Entretanto tal equação tem muitas soluções. Por exemplo, qualquer constante, \(u(x, t) = c\) é uma solução de (6). Outras soluções triviais seriam \(u(x, t) = cx\), onde \(c\) é uma constante. E vemos que há muitas outras. Qual delas vai representar a distribuição de temperatura na barra? Aí entram em cena informações adicionais sobre o problema específico em estudo. Inicialmente vemos que a distribuição de temperatura deve depender da temperatura inicial ao longo da barra. Fisicamente isso é razoável; matematicamente é um dado essencial na determinação de \(u(x, t)\). Essa distribuição inicial da temperatura é a condição inicial do problema, e escrevemos que

\[
u(x, 0) = f(x),
\]

onde \(f: [0, L] \rightarrow \mathbb{R}\) é uma função dada que descreve a temperatura nos vários pontos da barra no instante \(t = 0\).

Além dessa condição, é importante saber o que se passa nas extremidades da barra. Como elas não estão isoladas termicamente, pode haver entrada ou saída de calor. Isso deve, necessariamente, influir no valor de \(u(x, t)\). Temos, pois, de enunciar as condições de fronteira, as quais podem ser de vários tipos.

Condições de Fronteira. Tipo I. Suponhamos que, por algum processo, as extremidades da barra sejam mantidas a temperaturas conhecidas. Por exemplo, temperatura,
tura constante em cada extremidade,

\[u(0, t) = T_1 \quad \text{e} \quad u(L, t) = T_2, \]

onde \(T_1 \) e \(T_2 \) são temperaturas dadas. Um caso mais complexo seria aquele em que se conhece a variação da temperatura em uma extremidade (ou em ambas), isto é,

\[u(0, t) = h_0(t) \quad \text{e} \quad u(L, t) = h_1(t), \]

onde \(h_0(t) \) e \(h_1(t) \), para \(t \geq 0 \), são as temperaturas (conhecidas) em cada uma das extremidades.

Tipo II. Suponhamos que as extremidades estejam isoladas termicamente. Isso quer dizer que os fluxos de calor através de \(x = 0 \) e \(x = L \) são nulos. Da Expressão (2) para o fluxo de calor, vemos que as condições laterais nesse caso têm a forma

\[u_x(0, t) = u_x(L, t) = 0. \]

Tipo III. Suponhamos que o meio ambiente tenha temperatura \(u_0 \) e que haja transferências de calor, entre a barra e o meio ambiente, regidas pela lei

\[ku_x(0, t) = e \{u(0, t) - u_0\}, \]

\[-ku_x(L, t) = e \{u(L, t) - u_0\}, \]

onde \(e \) é uma constante, dita emissividade, característica do par constituído pelo material da barra e pelo meio ambiente.

Tipo IV. Uma combinação de duas quaisquer das condições acima, como, por exemplo,

\[u(0, t) = 0 \quad \text{e} \quad u_x(L, t) = 0. \]

1.2 Formulação matemática do problema da condução do calor

Vamos representar por \(\mathcal{R} \) a região do plano \((x, t)\) determinada por \(0 < x < L \) e \(t > 0 \), e por \(\overline{\mathcal{R}} \) a união de \(\mathcal{R} \) com sua fronteira que é formada pelas semi-retas \(\{x = 0, \ t > 0\} \) e \(\{x = L, \ t > 0\} \) e pelo segmento \(\{0 \leq x \leq L, \ t = 0\} \). O problema da condução do calor consiste em determinar uma função real \(u(x, t) \) definida em \(\overline{\mathcal{R}} \) que satisfaça à equação
do calor

\[u_t = K u_{xx} \quad \text{em} \; \mathbb{R}, \]

(1)

que satisfaça à condição inicial

\[u(x, 0) = f(x), \quad 0 \leq x \leq L, \]

(2)

onde \(f: [0, L] \rightarrow \mathbb{R} \) é uma função dada, e, finalmente, que satisfaça às condições de fronteira. Vamos começar com o caso em que as temperaturas nas extremidades da barra são mantidas constantemente zero, isto é,

\[u(0, t) = u(L, t) = 0. \]

(3)

O problema dado em (1)-(3) é chamado um \textit{problema de valores inicial e de fronteira}, ou \textit{problema misto}. Neste trabalho preferimos a primeira terminologia porque ela explica melhor a natureza do problema.

\textit{Método de Fourier.} Esse método consiste em, primeiramente, usar separação de variáveis e procurar soluções \(u(x, t) \) do problema na forma

\[u(x, t) = F(x)G(t). \]

(4)

Ao iniciar essa busca, esclarecemos que vamos proceder como o pesquisador que procura descobrir algo. Faremos uma série de raciocínios informais, sem nos preocuparmos com a justificação rigorosa de cada passo. Nossa meta é descobrir uma função ou funções que se constituam candidatos razoáveis à solução do nosso problema. Uma vez identificado esse candidato tentaremos provar \textit{rigorosamente} que ele é a solução do problema.

Substituindo (4) na equação do calor, obtemos

\[F(x)G'(t) = K F''(x)G(t) \]

(5)

ou

\[\frac{1}{K} G'(t) = F''(x) \frac{G(t)}{F(x)}. \]

(6)

[Observe que, para passar de (5) para (6), devemos admitir que \(G(t) \) e \(F(x) \) nunca se anulam. Entretanto, no espírito enunciado acima, não nos preocuparemos com isso, por enquanto.]

Agora observe que o lado esquerdo de (6) é função apenas de \(t \), enquanto que o lado direito é função apenas de \(x \). Logo, tanto o lado esquerdo de (6) como o lado direito (que são iguais!) devem independe
de \(x \) e de \(t \). Isso quer dizer
\[
\frac{F''(x)}{F(x)} = \sigma \quad \text{e} \quad \frac{1}{K} \frac{G'(t)}{G(t)} = \sigma,
\] (7)
onde \(\sigma \) é um parâmetro independente de \(t \) e de \(x \).

A primeira equação, em (7), nos diz que \(F \) deve satisfazer à equação diferencial ordinária
\[
F''(x) - \sigma F(x) = 0, \quad \text{para} \quad 0 < x < L,
\] (8)
e, como \(u(0, t) = u(L, t) = 0 \) a função \(F(x) \) deve satisfazer também às condições
\[
F(0) = F(L) = 0,
\] (9)
pois, como \(u(0, t) = F(0)G(t) = 0 \) para todo \(t > 0 \), segue-se que, se \(F(0) \neq 0 \), então \(G(t) \equiv 0 \) e, portanto, \(u \equiv 0 \). E, se bem que \(u \equiv 0 \) seja solução da equação do calor e satisfaça às condições de fronteira, essa função não tem chance de satisfazer à condição inicial \(u(x, 0) = f(x) \), a menos que \(f(x) \equiv 0 \).

Agora procedemos no sentido de ver quais os valores de \(\sigma \) que conduzam a soluções \(F(x) \) do problema dado em (8)-(9). É claro que estamos interessados apenas nas soluções \(F \) não identicamente nulas, de outro modo, obteríamos \(u \equiv 0 \), o que não interessa. Há três possibilidades para \(\sigma \), conforme segue.

i) Se \(\sigma > 0 \), a solução geral de (8) é da forma
\[
F(x) = c_1 e^{\sqrt{\sigma}x} + c_2 e^{-\sqrt{\sigma}x}.
\]
Portanto, se tal \(F \) satisfizer a (9), o par \((c_1, c_2)\) de constantes deverá ser solução do sistema
\[
c_1 + c_2 = 0,
\]
\[
c_1 e^{\sqrt{\sigma}L} + c_2 e^{-\sqrt{\sigma}L} = 0.
\]
Mas a única solução desse sistema é \(c_1 = c_2 = 0 \). E isso implica \(F \equiv 0 \), o que não interessa.

ii) Se \(\sigma = 0 \), a solução geral de (8) é da forma
\[
F(x) = c_1 x + c_2,
\]
e, para satisfazer às condições (9), devemos ter
\[
c_2 = 0 \quad \text{e} \quad c_1 L + c_2 = 0,
\]
o que implica \(c_1 = c_2 = 0 \) e, portanto, \(F \equiv 0 \).
iii) Se \(\sigma < 0 \), fazemos \(\sigma = -\lambda^2 \), e a solução geral de (8) é da forma

\[
F(x) = c_1 \cos \lambda x + c_2 \sen \lambda x.
\]

Para que uma tal \(F \) satisfaça (9), devemos ter

\[
c_1 = 0 \quad e \quad c_2 \sen \lambda L = 0.
\]

Como não queremos \(c_2 = 0 \), devemos ter

\[
\sen \lambda L = 0,
\]

o que implica \(\lambda L = n\pi \), onde \(n \) é um inteiro não-nulo \((n = \pm 1, \pm 2, \ldots)\). Os valores de \(-\sigma = \lambda^2\):

\[
\lambda_n^2 = \frac{n^2\pi^2}{L^2}
\]

são chamados os valores próprios ou autovalores do problema dado em (8)-(9), e as funções

\[
F_n(x) = \sen \frac{n\pi x}{L}
\]

são chamadas as funções próprias ou autofunções do problema dado em (8)-(9). Não há necessidade de considerar os valores negativos de \(\lambda_n \), pois isso conduziria apenas a uma autofunção diferindo apenas no sinal de uma outra obtida para um \(\lambda_n \) positivo. Mais adiante trabalharemos com expressões da forma \(c_n F_n(x) \), com a constante \(c_n \) a determinar.

Vejamos agora a segunda equação diferencial ordinária em (7). Sua solução geral é

\[
G(t) = c e^{\sigma R t}.
\]

Logo, para cada \(n = 1, 2, 3, \ldots \), temos uma função

\[
u_n(x, t) = e^{-n^2\pi^2 R t/L^2} \sen \frac{n\pi x}{L},
\]

a qual satisfaz à Equação (1) e às condições de fronteira (3), como o leitor poderá verificar sem dificuldades.

Esses \(u_n \) chegaram quase a resolver nosso problema dado em (1)-(3). A dificuldade está em que, sendo

\[
u_n(x, 0) = \sen \frac{n\pi x}{L},
\]

\(u_n(x, t) \) só seria solução de (1), (2) e (3) se a função dada \(f(x) \) tivesse a forma

\[
f(x) = \sen \frac{n\pi x}{L}.
\]
Assim, a solução de (1)-(3) com \(f(x) = \text{sen} \frac{5\pi x}{L} \) é a função

\[
u_4(x, t) = e^{-25\pi^2 Kt/L^2} \text{sen} \frac{5\pi x}{L}.
\]

Suponha agora que a condição inicial seja \(f(x) = 3 \text{sen} \frac{5\pi x}{L} \). Algo nos diz que a solução do problema dado em (1)-(3), nesse caso, deveria ser

\[
u(x, t) = 3e^{-25\pi^2 Kt/L^2} \text{sen} \frac{5\pi x}{L}.
\] (14)

E, de fato, podemos verificar isso, mostrando primeiro que tal função satisfaz à Equação (1). A seguir, fazendo \(x = 0 \) e \(x = L \), obtemos as condições de fronteira (3). E, finalmente, fazendo \(t = 0 \), obtemos a condição inicial (2) satisfeita.

Vamos um passo além. Suponha que a condição inicial dada fosse

\[
f(x) = 4 \text{sen} \frac{2\pi x}{L} + 3 \text{sen} \frac{5\pi x}{L}.
\]

Algo nos diz que, nesse caso, a solução do problema dado em (1)-(3) deveria ser

\[
u(x, t) = 4e^{-4\pi^2 Kt/L^2} \text{sen} \frac{2\pi x}{L} + 3e^{-25\pi^2 Kt/L^2} \text{sen} \frac{5\pi x}{L}.
\] (15)

E, de fato, como acima, poderemos verificar que todas as condições são satisfeitas.

A verificação de que (14) e (15) satisfazem à Equação (1) possivelmente indicou ao leitor que o seguinte fato geral é verdadeiro, explicando aquele algo misterioso!

"Se \(u(x, t) \) e \(v(x, t) \) forem soluções da Equação (1), então qualquer função da forma

\[
a u(x, t) + b v(x, t),
\]

onde \(a \) e \(b \) são constantes, será também uma solução de (1)." Esse fato é expresso dizendo-se que a Equação (1) é linear. Ou, ainda, uma combinação linear de soluções é também uma solução. Esse é o chamado princípio da superposição, o qual vale também para combinações lineares de três ou mais (qualquer número finito de) soluções.

Portanto qualquer expressão da forma

\[
\sum_{n=1}^{N} c_n u_n(x, t),
\]
onde os \(c_n \) são constantes e os \(u_n \) são as funções definidas em (13), é solução de (1) e (3). Consequentemente, se a condição inicial \(f(x) \) for da forma

\[
\sum_{n=1}^{N} c_n \text{sen} \frac{n\pi x}{L}
\]

então, nesse caso, a solução de (1)-(2)-(3) será

\[
u(x, t) = \sum_{n=1}^{N} c_n e^{-n^2\pi^2 Kr/\tau^2} \text{sen} \frac{n\pi x}{L}.
\]

E se \(f \) não tiver a forma simples acima? Aí vem a ideia de tomarmos “somas infinitas”. A seguir apresentamos a motivação informal para o estudo das séries de Fourier. Suponhamos que a função dada \(f(x) \) possa ser expressa em uma série da forma

\[
f(x) = \sum_{n=1}^{\infty} c_n \text{sen} \frac{n\pi x}{L}.
\]

(16)

Então o candidato para solução do problema dado em (1)-(3) nesse caso seria

\[
u(x, t) = \sum_{n=1}^{\infty} c_n e^{-n^2\pi^2 Kr/\tau^2} \text{sen} \frac{n\pi x}{L}.
\]

(17)

O método de Fourier culmina com a indicação desse candidato. Trabalharemos agora no sentido de elegê-lo.

O trabalho não será trivial. Vários problemas surgem.

PROBLEMA 1. Será que a função \(f(x) \) dada pode ser escrita na forma (16)? Aí deveremos estudar que funções podem ser escritas dessa forma, bem como a questão de obter os coeficientes \(c_n \), para uma dada função \(f \).

PROBLEMA 2. Sendo a função (17) definida por uma série, põe-se a questão de convergência da série. E, em seguida, a questão de verificar que, de fato, essa função satisfaz à equação diferencial (1).

Para resolver o Problema 1 vamos, nos Capítulos 2 e 3, desenvolver a teoria das séries de Fourier. Uma vez feito isso, voltaremos, no Capítulo 4, ao problema da condução do calor, para completar sua resolução. E estudaremos, nos capítulos posteriores, outros problemas físicos que
pode ser atacados com as técnicas desenvolvidas na resolução do problema do calor.

EXERCÍCIO. Proceda como na Secção 1.2 acima e estude o problema

\[u_t = Ku_{xx}, \quad \text{em} \quad \mathbb{R}, \]
\[u_x(0, t) = u_x(L, t) = 0, \quad \text{para} \quad t > 0, \]
\[u(x, 0) = f(x), \quad \text{para} \quad 0 < x < L. \]
REFERÊNCIAS

Os textos abaixo foram selecionados como leitura adicional para o estudante interessado.

TEXTOS GERAIS

SÉRIES E INTEGRAIS DE FOURIER

APLICAÇÕES

Djairo Guedes de Figueiredo

Análise de Fourier e Equações Diferenciais Parciais

CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico
Instituto de Matemática Pura e Aplicada